From Quantum A N ( Calogero ) to H 4 ( Rational ) Model ?

نویسندگان

  • Alexander V. TURBINER
  • A. V. Turbiner
چکیده

A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii) a number of polynomial eigenfunctions, (iii) a factorization property for eigenfunctions, and admit (iv) the separation of the radial coordinate and, hence, the existence of the 2nd order integral, (v) an algebraic form in invariants of a discrete symmetry group (in space of orbits).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

Quantum Inozemtsev model , quasi - exact solvability and N - fold supersymmetry

Inozemtsev models are classically integrable multi-particle dynamical systems related to Calogero-Moser models. Because of the additional q6 (rational models) or sin 2q (trigonometric models) potentials, their quantum versions are not exactly solvable in contrast with Calogero-Moser models. We show that quantum Inozemtsev models can be deformed to be a widest class of partly solvable (or quasi-...

متن کامل

ar X iv : h ep - t h / 96 12 25 3 v 1 3 1 D ec 1 99 6 Supertraces on the algebra of observables of the rational Calogero model based on the classical root system

We find a complete set of supertraces on the algebras H W (R) (ν), the algebra of observables of the rational Calogero model with harmonic interaction based on the classical root systems R of B N , C N and D N types. These results extend the results known for the case A N −1. It is shown that H W (R) (ν) admits q(R) independent supertraces where q(B N) = q(C N) is a number of partitions of N in...

متن کامل

Liouville Integrability of Classical Calogero-Moser Models

Liouville integrability of classical Calogero-Moser models is proved for models based on any root systems, including the non-crystallographic ones. It applies to all types of elliptic potentials, i.e. untwisted and twisted together with their degenerations (hyperbolic, trigonometric and rational), except for the rational potential models confined by a harmonic force. In this note we demonstrate...

متن کامل

Observable Algebras for the Rational and Trigonometric Euler-Calogero-Moser Models

We construct polynomial Poisson algebras of observables for the classical Euler-Calogero-Moser (ECM) models. The conserved Hamiltonians and symmetry algebras derived in a previous work are subsets of these algebras. We define their linear, N → ∞ limits, realizing W∞ type algebras coupled to current algebras. PAR LPTHE 94-16 L.P.T.H.E. Université Paris VI (CNRS UA 280), Box 126, Tour 16, 1er éta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011